Molecular representation learning is crucial for the problem of molecular property prediction, where graph neural networks (GNNs) serve as an effective solution due to their structure modeling capabilities. Since labeled data is often scarce and expensive to obtain, it is a great challenge for GNNs to generalize in the extensive molecular space. Recently, the training paradigm of "pre-train, fine-tune" has been leveraged to improve the generalization capabilities of GNNs. It uses self-supervised information to pre-train the GNN, and then performs fine-tuning to optimize the downstream task with just a few labels. However, pre-training does not always yield statistically significant improvement, especially for self-supervised learning with random structural masking. In fact, the molecular structure is characterized by motif subgraphs, which are frequently occurring and influence molecular properties. To leverage the task-related motifs, we propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT). MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt. The prompt effectively augments the molecular graph with meaningful motifs in the continuous representation space; this provides more structural patterns to aid the downstream classifier in identifying molecular properties. Extensive experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction, with or without a few fine-tuning steps.
translated by 谷歌翻译
反事实是一种新兴的模型解释类型,最近引起了行业和学术界的大量关注。与传统的基于特征的解释(例如,归因)不同,反事实是一系列假设样本,可以将模型决策翻转而对查询的扰动最小。鉴于有效的反事实,人类能够在``假设的情况''的情况下进行推理,以便更好地理解模型决策边界。但是,释放反事实可能是有害的,因为它可能无意间泄漏敏感信息给对手,这给模型安全性和数据隐私带来了更高的风险。为了弥合差距,在本文中,我们提出了一个新颖的框架,以生成不同的私人反事实(DPC),而无需触摸已部署的模型或解释集,在该集合中注入了噪音以进行保护,同时保持反事实的解释作用。特别是,我们使用功能机制训练自动编码器来构建嘈杂的类原型,然后根据差异隐私的后处理免疫从潜在原型中得出DPC。进一步的评估证明了拟议框架的有效性,表明DPC可以成功缓解提取和推理攻击的风险。
translated by 谷歌翻译
我们研究了时间序列分类(TSC),是时间序列数据挖掘的根本任务。事先从两个主要方向接近TSC:(1)基于相似性的方法,用于基于最近邻居的时间系列,(2)直接以数据驱动的方式学习分类表示的深度学习模型。在这两条研究线内的不同工作机制激励,我们的目的是以与共同模拟时间序列相似度的方式连接它们并学习表示。这是一个具有挑战性的任务,因为目前尚不清楚我们应该如何有效地利用相似性信息。为了解决挑战,我们提出了相似度感知的时序分类(SIMTSC),这是一种概念上简单且一般的框架,其模型与图形神经网络(GNN)的相似性信息。具体地,我们将TSC标记为图中的节点分类问题,其中节点对应于时间序列,并且链路对应于配对相似性。我们进一步设计了一种图形施工策略和具有负采样的批量培训算法,以提高培训效率。我们将SIMTSC与RESENT作为骨干网和动态时间翘曲(DTW)作为相似度测量。在完整的UCR数据集和几个多变量数据集上的广泛实验证明了在监督和半监督设置中将相似信息纳入深度学习模型的有效性。我们的代码可在https://github.com/daochenzha/simtsc提供
translated by 谷歌翻译
由于学习节点表示的优越性,图形神经网络(GNNS)受到了巨大的关注。这些模型依赖于消息传递和特征转换功能来从邻居编码结构和功能信息。然而,堆叠更多的卷积层显着降低了GNN的性能。大多数最近的研究将此限制属于过平滑问题,其中节点嵌入式会聚到无法区分的向量。通过许多实验观察,我们认为,主要因素降低性能是不稳定的正向标准化和后向梯度因特征变换的不当设计而导致的,尤其是对于未发生过平滑的浅GNN。因此,我们提出了一个名为Ortho-GConv的新型正交特征转换,这通常可以增加现有的GNN骨干,以稳定模型训练并改善模型的泛化性能。具体地,我们从三个视角综合地维持特征变换的正交性,即混合权重初始化,正交变换和正交正规。通过用ortho-gconv配备现有的GNN(例如GCN,JKNET,GCNII),我们展示了正交特征变换的一般性以实现稳定训练,并显示其对节点和图形分类任务的有效性。
translated by 谷歌翻译
感谢您的跨模式检索技术,通过将它们投射到一个共同的空间中,可以在24小时的监视系统中重新进行重新识别,从而实现了可见的信号(RGB-IR)重新识别(RE-ID)。但是,关于探测到探测器,几乎所有现有的基于RGB-IR的跨模式人RE-ID方法都集中在图像到图像匹配上,而视频对视频匹配包含更丰富的空间 - 和时间信息仍未探索。在本文中,我们主要研究基于视频的跨模式人Re-ID方法。为了实现这项任务,构建了一个基于视频的RGB-IR数据集,其中927个有效身份,具有463,259帧和21,863个曲目,由12个RGB/IR摄像机捕获。基于我们构造的数据集,我们证明,随着曲目中帧的增加,该性能确实达到了更多的增强功能,证明了视频对视频匹配在RGB-IR RE-ID中的重要性。此外,进一步提出了一种新颖的方法,不仅将两种模态投射到模态不变子空间,而且还提取了运动不变的时间记忆。多亏了这两种策略,我们基于视频的跨模式人重新ID取得了更好的结果。代码和数据集以:https://github.com/vcmproject233/mitml发布。
translated by 谷歌翻译
DETR风格的检测器在内域场景中脱颖而出,但是它们在域移位设置中的属性却没有探索。本文旨在根据两个发现,在域移位设置上使用DETR式检测器建立一个简单但有效的基线。首先,减轻主链的域移动,解码器输出功能在获得有利的结果方面表现出色。对于另一种高级域对准方法,这两个部分都进一步增强了性能。因此,我们提出了对象感知的对准(OAA)模块和最佳基于运输的比对(OTA)模块,以在骨干和检测器的输出上实现全面的域对齐。 OAA模块将伪标签标识的前景区域对齐骨干输出中的伪标签,从而导致基于域的不变特征。 OTA模块利用切成薄片的Wasserstein距离来最大化位置信息的保留,同时最大程度地减少解码器输出中的域间隙。我们将调查结果和对齐模块实施到我们的适应方法中,并基准在域移位设置上基于DETR风格的检测器。在各种领域自适应场景上进行的实验验证了我们方法的有效性。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译